
FOCUS: RELEASE ENGINEERING

38 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /18 / $ 3 3 . 0 0 © 2 018 I E E E

Continuous
Delivery
Building Trust in a Large-
Scale, Complex Government
Organization

Rodrigo Siqueira, Diego Camarinha, and Melissa Wen, University of
São Paulo

Paulo Meirelles, University of Brasilia

Fabio Kon, University of São Paulo

// Continuous delivery (CD) involves much

more than the operational challenges and

competitive benefits; it’s a survival technique.

As such, it’s also a way to gain the trust

of government and large organizations

in software development projects. //

FROM 2014 TO 2016, we worked
on a 30-month-long Brazilian gov-
ernment project to modernize the
Brazilian Public Software portal
(SPB; www.softwarepublico.gov.br).1
This project was a partnership be-
tween the Ministry of Planning,
Budget, and Management (MPOG)

and two public universities: the Uni-
versity of Brasilia and University of
São Paulo.

During this time, the SPB por-
tal evolved into a collaborative de-
velopment environment (CDE),
which brought significant benefits
for the government and society. The

government could minimize bureau-
cracy and software development
costs, by reusing the same set of ap-
plications across different govern-
ment agencies. Society could more
transparently follow government ex-
penses and contribute to software
project communities.

In this article, we discuss the use
of continuous delivery (CD) dur-
ing our experience as the academic
partner in this project. We show how
we implemented CD in a large in-
stitution with traditional, waterfall-
like values and how CD helped to
build trust between the government
and the university team. CD enabled
us to show our progress and to earn
the government’s confidence that we
could adequately fulfill its requests,
becoming an essential aspect of our
interaction. According to this ex-
perience, the use of CD as a tool to
build trust relationships is yet an-
other of its benefits.2,3

Context
SPB is a governmental program cre-
ated to foster sharing and collabora-
tion on open source software (OSS)
development for the Brazilian pub-
lic administration. The government
managed both software requirements
and server infrastructure. However,
its hierarchical and traditional pro-
cesses made it unfamiliar with new
software development techniques,
such as CD. All our requests had to
pass through layers of bureaucracy
before being answered; accessing
the government’s infrastructure to
deploy software was not different.
The difficulties were aggravated be-
cause the new SPB portal is an un-
precedented platform in the Brazilian
government, with a complicated de-
ployment process.4

The project suffered significant
interference from the board of

 MARCH/APRIL 2018 | IEEE SOFTWARE 39

directors over time because the por-
tal represents an interface between
government and society. In light of
political interests, directors continu-
ally imposed changes to the platform
while ignoring our technical advice.
In 2015, the board of directors was
changed and, with it, the vision of
the project. New directors had dif-
ferent political agendas, which af-
fected the project’s requirements that
had been previously approved.

In this context, we overcame two
distinct challenges:

• deconstructing the widespread
belief among government staff
that any project in partnership
with a university is doomed to
fail, and

• dealing with the bureaucracies
involved in the government de-
ployment process.

First, our development team
was not the typical one, consist-
ing mainly of undergraduate in-
terns supported by senior developers
and designers, all coordinated by
two professors. Our unconventional
team structure and organization
was considered unprofessional by
government standards with regard
to time and resource allocation, ac-
countability, and team continuity.
On the government side, the SPB
portal evolution was the first soft-
ware development collaboration in-
volving universities and the MPOG
staff, thus raising disbelief.

Second, our team approached
software deployment differently
from the government. We believed
frequent delivery is better for the
project’s success. In contrast, the
MPOG is used to the idea of a single
deployment at the end of the project,
and neither its bureaucratic struc-
ture nor its technical expertise was

conducive to this style of work. That
was hampering the benefits of the
tool and preventing us from showing
off the fruits of the project to those
responsible for evaluating it.

These challenges made our re-
lationship with the MPOG staff
strained, particularly during the first
year, and alerted us to the fact that
they could cancel the project at any
time. The deployment limitation was
the substantial technical issue we
could tackle in the short term. Thus,
we worked to deploy the software
into our infrastructure and showed
it to the government evaluators. This
strategy proved to them we could
efficiently provide new features
and fulfill their requirement deliv-
ery expectations, and incited them
to demand that the latest version be
deployed in their infrastructure. Our
CD approach generated more pres-
sure on the IT department respon-
sible for the deployment routines.
With each CD cycle, we gradually
built a new relationship among all
parties; by the end of the project, we
became active participants in the de-
ployment operations delivering qual-
ity software very frequently.

Our Continuous-Delivery
Pipeline
The SPB portal is an open CDE with
additional social features, having 83
software communities and 6,460
user accounts, mostly from govern-
ment employees. We built a system
of systems5 adapting and integrat-
ing five existing OSS projects: Colab
(www.github.com/colab), Noosfero
(www.noosfero.org), GitLab (www
.gitlab.com), Mezuro (mezuro.github
.io), and Mailman (www.list.org).
Colab orchestrates these multiple
systems using a plug-in architecture
and allowed us to smoothly provide
a unified interface to the final users,

including single sign-on and global
searches.1 All these integrated sys-
tems involve a total of 106,253 com-
mits and 1,347,421 LOC.

Portal deployment follows a typi-
cal CD pipeline,6 adapted to our
technical and organizational context
and the use of OSS best practices.
As depicted in Figure 1, it begins
when a new feature is ready for de-
ployment and ends when it reaches
production.

Automated Tests

Each integrated system is a Colab
plug-in and had to be tested with
its own test suite. In addition, we
had to test the platform as a whole.
Since the plug-ins have their own
test suites, they also assume a double
role as both plug-in tests and inte-
gration tests. If any test suite failed,
by either a test error or coverage re-
duction below a certain threshold,
the process stopped. Only when all
tests passed did the pipeline proceed
to the next step.

Preparing a New Release

A separate Git repository hosted
each system. New software compo-
nent releases were tagged referenc-
ing a specific new feature or bug
fix. SPB had its own Git repository
(www.softwarepublico.gov.br/gitlab
/softwarepublico). An SPB portal
release was an aggregate of all its
systems. When a new component
release passed all of the SPB inte-
gration tests, we manually created a
corresponding new tag in its reposi-
tory. At the end of this process, we
started packaging.

Packaging

After creating a new tag, our DevOps
team started the packaging pro-
cess. Packaging brings portability,
simplifies deployment, and enables

40 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

configuration and permission con-
trol. Our approach involved building
separate packages for each system,
in three fully automated steps: gen-
erating scripts for the specific envi-
ronment, building the package, and
uploading it to a package repository.
When all ran successfully, the new
packages would be ready and avail-
able for our deployment scripts.

Validation Environment

The validation environment (VE)
is a replica of the production en-
vironment (PE), with anonymized
data and with access restricted to
MPOG staff and our DevOps team.
To configure this environment, we
used Chef (www.chef.io) and Chake
(www.github.com/terceiro/chake), a
serverless configuration tool created
by our team to maintain environ-
ment consistency, thus simplifying
the deployment process.

Acceptance Tests

After a new SPB portal VE deploy-
ment, we used the environment to
verify the integrity of the entire
portal. MPOG staff also checked
the new features, required changes,
and bug fixes. If they identified a

problem, they would notify develop-
ers via comments on the SPB portal
issue tracker, prompting the team to
fix it and restart the pipeline. Other-
wise, we could move forward.

Production Environment Deployment

After the VE check, we could finally
begin the deployment in production,
with the same configuration man-
agement tool, scripts, and package
versions as in the VE. After the de-
ployment was completed, both the
VE and PE were identical, making
new features and bug fixes available
to end users.

Benefits
CD brings many advantages such as
accelerated time to market, build-
ing the right product, productivity
and efficiency improvements, stable
releases, and better customer satis-
faction.2,3 The charts presented in
Figure 2 show these benefits in our
project and associate them with the
creation of a DevOps team. Over 30
months, we deployed 84 versions.
Over 64% of the releases happened
in the last 12 months, after the cre-
ation of the DevOps team. Besides
these results, working with the

government we noticed the follow-
ing additional benefits.

Strengthening Trust in the Relationship

with the Government

CD helped strengthen trust between
developers and the MPOG staff.
Before using CD, the MPOG staff
could validate features developed
only at the end of the release cycle,
usually every four months. With the
implementation of CD, intermedi-
ate and candidate versions became
available, allowing them to perform
small validations over time. Con-
stant monitoring of the development
work brought greater assurance to
the MPOG leaders and improved the
interactions with our team.

Responsiveness to Change

Responsiveness was one of the direct
benefits of adopting the CD pipeline.
Political forces may change require-
ments and priorities at any time. The
ability to react quickly to changes
requested by the government was
vital to the project’s survival for
30 months. We noticed that if we took
too long to meet the government’s de-
mands, it could reduce financial sup-
port and even cancel the project.

FIGURE 1. The Brazilian Public Software (SPB) deployment pipeline.

System 2

System 1

System 3

System 4

Implemented
code

Automated
testing

Preparing
new release

Packaging Acceptance
tests

Production
environment

Automated Manual

Validation
environment
deployment

New
feature

available

Wait
for

analysts’
feedback

Package
set

SPB release

P
lu

g
-i

n
 t

es
ts

New
feature

available

System 1
unit tests

System 1
release

System 2
release

System 2
unit tests

System 3
unit tests

System 4
unit tests

System 3
release

System 4
release

Feature

MARCH/APRIL 2018 | IEEE SOFTWARE 41

CD helped us keep the PE
up-to-date, even with partial ver-
sions of a feature. Therefore, we al-
ways had new results to present at
meetings, easing the government’s
concerns about the expected final
delivery. For our team, CD made de-
velopers always confident that the
project would last a little longer.

Shared Responsibility

According to the conventional MPOG
process, the development team could
not track what happened to the
code after its delivery, since the
MPOG employees were the only
ones responsible for deployment.
The implementation of CD made our
development team feel equally re-
sponsible for what was getting into
production and take ownership of the
project.4

Interestingly, the CD pipeline had
the same effect on the MPOG staff.
They became more engaged in the
whole process, opening and discuss-
ing issues during the evolution of the
platform. Additionally, developers
worked to improve the CD pipeline
and speed up the process of making
new features available in the produc-
tion environment.

Synchronization between Government

and Development

The CD pipeline performance de-
pended on the synchronization be-
tween our development team and the
MPOG staff: each party had to be
prepared to take action as soon as the
other concluded a given task. Initially,
the MPOG staff did not contemplate
this in their schedule, which, com-
bined with the bureaucracy in pro-
viding access to the PE (up to three
days), resulted in significant delays in
the validation of new features. The
use of an explicit CD pipeline helped
us to identify critical points of delay
and increase our productivity.

Lessons Learned
Due to the successful building of the
CD pipeline, we not only overcame
the challenges we described previ-
ously but also improved the MPOG
deployment process and kept the
project alive until its successful con-
clusion. We now look at the lessons
we learned, which can be leveraged
by readers in other situations.

Build CD from Scratch

Taking on the responsibility for im-
plementing CD impacted the whole

team. Most of our team members
did not have CD know-how, and we
had few working hours available to
build the initial version of the pipe-
line. The construction and mainte-
nance of the CD process were made
possible by two key decisions.

First, we selected the most expe-
rienced senior developers and some
advanced interns to work on a spe-
cific DevOps team. These senior de-
velopers used their experience in OSS
projects to craft an initial proposal
for the deployment process. The so-
lution enabled us to automate the de-
ployment, even though the process
was, initially, still rudimentary.

Second, we interchanged team
members and encouraged teammates
to migrate to the DevOps team. The
benefits were twofold: mitigating the
difficulty in sharing knowledge be-
tween DevOps developers and fea-
ture developers, and evolving the
process on-the-fly.

Overcoming Mistrust

Adopting an unfamiliar approach re-
quires trust. The government staff,
traditionally, expected and were
prepared to validate and deploy a
single deliverable. However, the

FIGURE 2. The (a) evolution of SPB releases and (b) development team members’ distribution.

N
o.

 o
f

m
em

b
er

s

June 2014 Jan. 2015 June 2015 Jan. 2016 June 2016
0

10

20

30

40

50

60

Release no. No. of releases per semester

0

25

50

75

100

5
15

30

57

84

June 2014 Jan. 2015 June 2015 Jan. 2016 June 2016

No. of project members No. of undergraduate interns

No. of DevOps members(a) (b)

15
21

23 25 25 24

33 34
38

41

48

36
34

25

12
25

11
16 18

28
31

37

28 26

19
26

0

6
9

11
6

42 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

RODRIGO SIQUEIRA is a computer

science MSc student at the University of

São Paulo’s Institute of Mathematics and

Statistics. His research interests include

software engineering, operating systems,

and computer architecture. He was a

coach and developer on the Brazilian

Public Software project for two years.

Siquiera received a bachelor of software

engineering from the University of Brasilia.

Contact him at siqueira@ime.usp.br.

PAULO MEIRELLES is a professor of

software engineering at the University of

Brasilia and a researcher at the Free/Libre/

Open Source Software Competence Center

at the University of São Paulo’s Institute

of Mathematics and Statistics. He was the

head of Brazilian Public Software portal de-

velopment. His research interests include

free-software development, agile software

development, and source code metrics.

Meirelles received a PhD in computer

science from the University of São Paulo.

Contact him at paulormm@unb.br.

DIEGO CAMARINHA is a computer

science MSc student at the University of

São Paulo’s Institute of Mathematics and

Statistics. His research interests include

software engineering, computer networks,

and source code metrics. He was a senior

developer on the Brazilian Public Software

project for two years. Camarinha received

a bachelor of computer science from the

University of São Paulo. Contact him at

diegoamc@ime.usp.br.

FABIO KON is a full professor of computer

science at the University of São Paulo’s

Institute of Mathematics and Statistics. His

research interests include agile software

development, smart cities, open source

software, and distributed systems. Kon

received a PhD in computer science from the

University of Illinois at Urbana-Champaign.

He’s a cofounder of the Free/Libre/Open

Source Software Competence Center and

editor in chief of the Journal of Internet
Services and Applications. Contact him at

fabio.kon@ime.usp.br.

MELISSA WEN is a computer science

MSc student at the University of São

Paulo’s Institute of Mathematics and

Statistics. She was a senior developer on

the Brazilian Public Software project and a

core developer of the Noosfero social-

networking platform at Colivre. Her areas

of interest include software engineering

and free-software development. Wen

received a bachelor of computer science

from the Federal University of Bahia. Con-

tact her at melissa.srw@gmail.com.

 MARCH/APRIL 2018 | IEEE SOFTWARE 43

steady growth of SPB complexity
made large deliveries unsustainable.
The CD approach was necessary.4
Therefore, we developed the follow-
ing line of action to enable this new
dynamics.

We decided to demonstrate ac-
tual results, instead of simply re-
porting them. Initially, we did not
have access to the government in-
frastructure, so we created our own
validation environment. Thus, we
were able to follow the CD pipe-
line until production deployment,
when we faced two problems. First,
our pace of intermediate deliver-
ies was faster than the deployment
to production by the MPOG staff.
Second, specific issues of the gov-
ernmental infrastructure made
some validated features not work as
expected in the PE. That situation
gave us arguments to negotiate ac-
cess to the PE.

We also made project manage-
ment transparent and collaborative
for government staff. Allowing the
MPOG staff to track our develop-
ment process showed them we were
fulfilling our commitments. They
started to interact more actively in
the generation of versions and be-
came involved in CD. After under-
standing it, the government staff
helped us negotiate access to the VE
with the MPOG leaders, creating an
isolated replica of the PE.

Finally, we aimed to gain the con-
fidence of government staff. With the
PE replica, we were able to run the en-
tire pipeline and win the trust of the
MPOG staff involved in the process.
They saw the mobilization and re-
sponsiveness of our team to generate
each new version package. They also
recognized the quality of our work
and deployment process. In the end,
the government staff realized that it
would be beneficial for the project if

they granted us access to the infra-
structure, both the VE and PE.

I n summary, we encourage the
use of a well-thought-out CD
pipeline as a means to gain trust

in software development projects
with government and large organiza-
tions as well.

References
 1. P. Meirelles et al., “Brazilian Public

Software Portal: An Integrated

Platform for Collaborative Develop-

ment,” OpenSym, 2017.

 2. L. Chen, “Continuous Delivery: Huge

Benefits, but Challenges Too,” IEEE

Software, vol. 32, no. 2, 2015, pp.

50–54.

 3. T. Savor et al., “Continuous Deploy-

ment at Facebook and OANDA,”

IEEE/ACM Int’l Conf. Software

Eng. Companion, 2016, pp. 21–30.

 4. M. Shahin, M.A. Babar, and L. Zhu.

“The Intersection of Continuous De-

ployment and Architecting Process:

Practitioners’ Perspectives,” Proc.

10th ACM/IEEE Int’l Symp. Empiri-

cal Software Eng. and Measurement

(ESEM 16), 2016, article 44.

 5. C.B. Nielsen et al., “Systems of Systems

Engineering: Basic Concepts, Model-

Based Techniques, and Research Direc-

tions,” ACM Computing Surveys,

vol. 48, no. 2, 2015, article 18.

 6. J. Humble and D. Farley, Continuous

Delivery: Reliable Software Releases

through Build, Test, and Deployment

Automation, Addison-Wesley, 2010.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

IEEE TRANSACTIONS ON

For more information
on paper submission,
featured articles, calls for
papers, and subscription
links visit:

www.computer.org/tbd

SUBSCRIBE
AND SUBMIT

TBD

TBD

TODAY

